LOAD TEST ON DIESEL ENGINE

Ex. No:

Aim:

To conduct load test on given diesel engine in order to determine:

- 1. Brake power of the engine
- 2. Indicated power of the engine
- 3. Total fuel consumption
- 4. Specific fuel consumption
- 5. Mechanical efficiency
- 6. Break thermal efficiency or overall efficiency
- 7. Indicated thermal efficiency

Apparatus Required:

- 1. Diesel engine with loading arrangement
- 2. Thread and scale (or) measuring tape
- 3. Stop watch
- 4. Tachometer

Theory and Description:

In diesel engine the diesel is used as the fuel . The diesel engine may be either two stroke engine or four stroke engine . In two stroke engine there is a one power stroke for each revolution of the crank shaft . In four stroke engine there is a one power stroke for every two revolution of the crank shaft , Most of the heavy duty engines are four stroke engines . The engine is provided with suitable loading arrangement to apple and measure the load . The provisions are also available to measure the fuel consumption and speed .

Definitions:

Break power:

The useful power available at the crank shaft of the engine is called brake power (BP). The brake power of the engine are determined by

WORK

SUCCEED .

 $2\pi NT$

60 x 1000

KW

BP =

- 1. Rope brake dynamometer (T = WRe) and
- 2. Prony brake dynamometer (T = WL) and
- 3. Hydraulic dynamometer BP = WN / C Kw
- 4. Electrical dynamometer

Indicated power:

The power actually developed inside the cylinder due to the combustion of fuel are called indicated power (IP) (or)

$$IP = F.P + B.P$$

where F.P = Frictional Power

Observation and Tabulation:

Calorific value fuel: 42000 KJ/kg.
 Radius of the brake drum: B
 Radius of the Rope r =
 Effective Radius Re = R+r 'm'

for nates	
83 F	
	3
11	
di i	Ś
č)
3	
OFP	
Ciffic	2
Sna	
o	

FT.	(۱۵) عالم		
noveral	(στ)η _{Β.τ.}		
Thmech	%		
SFC	= IFC BP kg/kw-hr		
Б	KW		
d.	KW.		
ВР	'KW'		
TFC	Kg/hr		
Time taken TFC	for t&CC fuel consumotion Kg/hr 'KW' 'KW' 'KW' 'Sec'		
Speed	'Rpm' in		
	Net load w 'N'		
Load	W,-W ₂		
_ ل	× × × × × × × × × × × × × × × × × × ×		
32	W kg		
	S No		

Specific Fuel Consumption:

It is defined as the mass of the fuel consumed per hour per brake power of the engine . Its unit is Kg / KW $-\,hr$

$$SFC = \frac{TFC}{B.P}$$

Where TFC = Total Fuel consumption in kg / hr

Total Fuel Consumption:

It is the mass of fuel consumed at particular load consumed at particular load per hour .It is expressed in kg $/\,\mbox{hr}$

Mechanical Efficiency:

It is defined as the ratio of Brake power to indicated power

$$\eta_{\text{mech}} = \underline{B.P}$$
Heat Supplied $x 100$

Brake thermal efficiency or overall efficiency:

It is defined as the ratio of brake power to heat supplied by the combustion of fuel.

$$\eta_{B.T}$$
 or $\eta_{overall}$ = $\underline{B.P}$ Heat Supplied

Heat supplied = mass of the fuel consumed per sec x calorific value of fuel = $m_f x C.V.$

$$m_f = \frac{TFC}{3600} \frac{Kg}{sec}$$

The calorific value of the diesel ranges from $42,\!000$ KJ / Kg to $45,\!000$ KJ/Kg depends on the quality of the fuel .

The calorific value of petrol ranges from 41000 KJ/Kg to 44000 KJ/Kg

Indicated thermal efficiency or Thermal efficiency

It is defined as the ratio of indicated power to heat supplied by the combustion of fuel

$$\eta_{I.T} = \underline{I.P}_{Heat \text{ supplied}}$$

$$= \underline{I.P}_{m_f \text{ x C.V}}$$
 $x 100$

$$x 100 ; mf = \underline{TFC}_{3600} \text{ kg/sec}$$

Procedure:

- 1. From the name plate details calculate the maximum load that can be applied on the given engine.
- 2. Check the engine for fuel availability, lubricant and cooling water connection.
- 3. Release the load on the engine and start the engine with no load condition. Allow the engine to run for few minute to attain rated speed
- 4. Note the speed of the engine and time taken for consumption of 10 cc of fuel
- 5. Increase the load on the engine and note the speed of the engine and time taken for 10cc of fuel consumption
- 6. Repeat the procedure '5' up to 75% of the maximum load and tabulate the readings.

Graph:

The following graphs has to be drawn

- 1. B.P Vs TFC
- 2. B.P Vs SFC
- 3. B.P Vs η_{mech}
- 4. B.P Vs η_{B.T}
- 5. B.P Vs $\eta_{i.T}$

LEARN

WORK

SUCCEED <

Results:

Load test on given diesel engine were conducted and the TFC ,BP , IP , SFC , $\,\eta_{\text{mech}}$, $\,\eta_{\text{B.T}}\,\,$ and $\,\eta_{\text{LT}}\,\,$ were determined at different loads .